F1 – La fisica in gioco sulle monoposto in curva: le forze laterali. Parte 1

Nell’articolo “Aerodinamica deportante per curve da paura” abbiamo visto come la deportanza, “schiacciando” le vetture di F1 al suolo, consenta di percorrere curve a velocità altrimenti  impossibili da raggiungere con il solo grip meccanico. 

Ma quali forze laterali entrano in gioco sulle monoposto quando queste percorrono una curva?  N.B. La II parte di questo’articolo tratterà invece le forze laterali che agiscono sul corpo del pilota in curva. 

Semplificando i concetti al massimo ed evitando una carrellata di formule e definizioni, si può dire che, quando il pilota imposta una curva, si generano due forze uguali e contrarie: una forza centripeta ed una centrifuga. 

Quella centripeta è la forza che “tira” la vettura verso l’interno della curva. Quella centrifuga è la forza che “spinge” la vettura verso l’esterno. L’equilibrio tra le due forze consente la percorrenza  della curva.

Forze laterali F1

F1 – La forza centripeta 

Si genera grazie all’aderenza tra gomma e asfalto. Tale aderenza (in gergo, “grip”) si occupa di  “costringere” la vettura a percorrere la curva, perché altrimenti proseguirebbe di moto rettilineo a causa dell’inerzia (per il primo principio della dinamica o principio di inerzia). 

F1 – La forza centrifuga 

La forza centrifuga si genera perché la vettura, per l’inerzia, tenderebbe a conservare il proprio moto rettilineo, ma ne viene deviata dalla forza centripeta e ad essa oppone (per la terza legge della dinamica) una forza uguale e contraria (è una forza cosiddetta apparente, ma non è questa la sede per andare nel dettaglio). La sua formula è:

Fcf = mv2/r 

Nella lettura di questa formula si possono fare alcune osservazioni interessanti.

Fcf = forza centrifuga;
m = massa del veicolo;
v = velocità;
r = raggio della curva. 

La formula della forza centrifuga ci dice che essa è direttamente proporzionale alla massa, è direttamente proporzionale al quadrato della velocità ed è inversamente proporzionale al raggio. Così parlerebbe un professore di fisica lisciandosi un baffo, ma cosa vuol dire nel concreto? Vuol dire che più massa c’è, più il veicolo è spinto verso l’esterno. 

Vuol dire anche che all’aumentare della velocità aumenta, chiaramente, la forza centrifuga. Ma è bene notare che l’apporto della velocità è esponenziale! Vuol dire che (pane al pane, vino al vino) se al posto di v metto 2, avrò 4; ma se metto 4, avrò 16! 

All’aumentare del raggio di curvatura, invece, la forza centrifuga decresce. Detto diversamente, a parità di massa e di velocità, più larga è la curva, minore è la forza centrifuga: ecco perché le traiettorie hanno tanta importanza; “raddrizzare” le curve vuol dire poterle percorrere più  velocemente! 

Facciamo un esempio concreto, giocando un po’ con i numeri: 

m = massa = 1 t = 1000 kg;
v = velocità = 100 km/h = 27,8 m/s;
r = raggio = 5 m.
Fcf = forza centrifuga = 154568 N = 15762 kg 

Se raddoppiamo la velocità (da 100 passiamo a 200 km/h), mantenendo uguali gli altri valori, la  forza centrifuga sarà pari a: 618272 N, ovvero 63046 kg. Come si vede è bastato raddoppiare la  velocità per avere un aumento della spinta laterale ben più che doppio!

Se adesso, tenendo uguale la massa e la velocità di 200 km/h, aumentiamo il raggio di curva (curva  più larga) a 10 m, vedremo che la forza laterale si riduce: 309136 N, che sono 31523 kg

F1 – Momenti 

Vediamo ora come la forza centripeta e la forza centrifuga entrano in relazione tra loro su un  veicolo. Il punto di applicazione del vettore della forza centripeta coincide col vincolo che obbliga la vettura  a seguire la curva: ovvero, il punto di contatto tra ruota e asfalto; è lì che viene applicata questa  forza. 

Nel caso della forza centrifuga, invece, il punto di applicazione è il baricentro della vettura.

E poiché il baricentro non è sull’asfalto ma più in alto, la diversità dei punti di applicazione della forza centripeta e di quella centrifuga forma una coppia il cui effetto può compromettere l’equilibrio della vettura (ecco perché più alto è il baricentro, più è facile ribaltarsi in curva). Questa coppia di forze costituisce un momento ribaltante Mc

In curva il veicolo si inclinerà verso l’esterno e verrà a crearsi una seconda coppia, il momento  raddrizzante Mr, costituito dalla forza peso p e dalla reazione vincolare del piano di appoggio. Chiaramente quando la coppia Mc supererà la coppia Mr, l’auto si ribalterà.

Per ridurre al minimo il momento ribaltante, è utile abbassare il più possibile il baricentro; e per aumentare il momento raddrizzante, invece, è utile una carreggiata larga della vettura. Beh, le Formula 1 hanno un baricentro molto basso e una carreggiata molto larga: è quasi impossibile vederle ribaltarsi se non in seguito ad un contatto con un’altra vettura o ad un impatto contro le barriere.

Percorrere una curva al limite 

Alla luce di quanto visto finora, possiamo provare a dare un’accezione più concreta alla definizione un po’ “poetica” di percorrere una curva al limite: vuol dire percorrerla alla massima velocità possibile tale che la forza centrifuga non superi la forza che il grip è in grado di generare per opporsi a tale forza. Vuol dire riuscire a stare su un precario equilibrio, superato il quale viene “scardinato” il  vincolo su cui è applicata la forza centripeta e la vettura esce di traiettoria. 

Inutile sottolineare quanto conti la sensibilità del pilota in questo frangente: è lui che, “sentendo” quel grip, “saggiando” quel limite, si “aggrappa” a quel confine tra l’andare veloce e l’andare  fuori… Il pilota “gioca” con i limiti della fisica.


Grafiche: Mauro Mondiello

Exit mobile version